Applied Behavioural Ecology

"Applied"

- Behavioural Ecology
 - The study of animal behaviour in the context of evolutionary fitness
- "Applied"
 - Generating practical research

"Applied"

- Behavioural Ecology
 - The study of animal behaviour in the context of evolutionary fitness
- "Applied"
 - Generating practical research

- Understand and predict behaviour of the study species for their (or our) gain
 - Not always easy

Applications

Animal Welfare

Pest Control

Livestock Productivity

Note that these graphs are conceptual; the real scenario isn't so simple!

Need to define
 "stress" to help
 subjectively decide on
 a compromise density

Example: Chicken Stress Levels

- Cortisol (stress hormone) most common measure of animal stress
 - Levels vary for other reasons:
 - Circadian rhythms
 - Age
 - Species, breed
 - Sampling method
- Use BE techniques to standardize measurement

- BE can guide environmental modifications, encouraging wild-type behaviours:
 - Perches, foraging substrates improve egg production, reduce aggression

Improving Animal Welfare

- Objective study of "stress"
- Wild-type behaviours more easily replicated

Sex Ratios

- Fisher (1930)
 - -50/50 is ESS

Sex Ratios

- Trivers and Willard (1973)
 - Optimal reproductive investment strategies conditional on mother and offspring health
 - (with assumptions)

Sex Ratios

- Male kids have a greater average payoff in good condition
- Female offspring are "the best of a bad situation"
 - Red deer, seals, dogs, pigs,...

	Male offspring	Female Offspring
Good condition	****	**
Lousy condition	-	*

Sex Ratios in Agriculture

- Baseline dairy cattle sex ratio 52:48 (M:F) (Skjervold and James, 1979 in Roche et al. 2006)
- Cows in better condition between last calving and conception have more males (Roche et al. 2006)

BE theory allows non-invasive sex ratio prediction and manipulation of livestock

Manipulate insect behaviour with chemicals

Biocontrol of Corn Earworms

- Corn earworms feed on corn ears.
- A parasitoid wasp (*T. pretiosum*) destroys earworm eggs

Biocontrol of Corn Earworms

- Problem:
 - How to optimize the rate of wasp parasitism?
- One route:
 - Pheromonal attractant sprays (Lewis et al. 1972)

Pheromonal Control of Corn Earworms

• Problem:

 Blanket coverage of the pheromone doesn't change parasitism much

Pheromonal Control of Corn Earworms

- (Likely) Answer:
 - Lacking an egg payoff,
 the wasps change
 their behaviour (Roitberg 2007)
 - Habituation
- Workaround: spray less attractant
 - Foraging models can determine how much

 BE can inform and optimize pest management strategies by providing evolutionary insights

Conservation

- Understanding behaviour important for many applications
 - Captive breeding
 - Re-introductions
 - Extinction forecasts/PVA

Conservation: Whooping Cranes

- "Captive" breeding
 - Cross-fostering by Sandhill Cranes
 - Mating problems
- Re-introduction
 - Ultralight aircraft migration training

Conservation: Extinction Forecasts/PVA

- Estimate outcomes of multiple management scenarios
 - Can be data hungry
 - Individual-based models have emergent properties

Conservation: Extinction Forecasts

- Now estimate consequences of different behaviours
 - How does competition for territory affect extinction probability? (Lopez-Sepulcre et al. 2009)

Seychelles Magpie Robins

- Establish breeding territories
- Nonbreeding subordinates:
 - Improve breeding success within years
 - Some territorial takeovers across years

Seychelles Magpie Robins

- Simulate the population using a set of initial conditions behavioural "rules"
 - "If territory X features a breeder (no subordinates), fledging probability is 0.6
 - "Takeover probability is 0.05. If takeover occurs, fledging probability is 0.1"

Seychelles Magpie Robins

- Simulate the population using a set of initial conditions behavioural "rules"
 - "If territory X features a breeder and a subordinate, fledging probability is 0.8 (vs. 0.6)
 - "Takeover probability is 0.2 (vs 0.05). If takeover occurs, fledging probability is 0.1"

- Now consider two scenarios:
 - 1) Use these rules
 - -2) Eliminate territorial takeovers

Seychelles Robins: Implications

- Considering
 behavioural
 interactions can
 change our
 expectations for
 population recovery
- In this species, managing social interactions may improve recovery

- BE approaches can make realistic predictions about conservation management scenarios
 - Guide decision-making

Lecture notes (minus some of the pictures) at http://leonardlab.biology.dal.ca -- "Teaching"